Search results for " 31C45"

showing 10 items of 10 documents

Perron's method for the porous medium equation

2016

O. Perron introduced his celebrated method for the Dirichlet problem for harmonic functions in 1923. The method produces two solution candidates for given boundary values, an upper solution and a lower solution. A central issue is then to determine when the two solutions are actually the same function. The classical result in this direction is Wiener’s resolutivity theorem: the upper and lower solutions coincide for all continuous boundary values. We discuss the resolutivity theorem and the related notions for the porous medium equation ut −∆u = 0

Dirichlet problemApplied MathematicsGeneral Mathematicsta111010102 general mathematicsMathematical analysiscomparison principlePerron methodFunction (mathematics)Primary 35K55 Secondary 35K65 35K20 31C45obstaclesPorous medium equation01 natural sciencesBoundary values010101 applied mathematicsMathematics - Analysis of PDEsHarmonic functionFOS: Mathematics0101 mathematicsPorous mediumPerron methodAnalysis of PDEs (math.AP)Mathematics
researchProduct

Equivalence of viscosity and weak solutions for the $p(x)$-Laplacian

2010

We consider different notions of solutions to the $p(x)$-Laplace equation $-\div(\abs{Du(x)}^{p(x)-2}Du(x))=0$ with $ 1<p(x)<\infty$. We show by proving a comparison principle that viscosity supersolutions and $p(x)$-superharmonic functions of nonlinear potential theory coincide. This implies that weak and viscosity solutions are the same class of functions, and that viscosity solutions to Dirichlet problems are unique. As an application, we prove a Rad\'o type removability theorem.

Pure mathematicsPrimary 35J92 Secondary 35D40 31C45 35B60Applied MathematicsMathematics::Analysis of PDEsDirichlet distributionPotential theoryNonlinear systemsymbols.namesakeMathematics - Analysis of PDEsFOS: MathematicssymbolsLaplace operatorEquivalence (measure theory)Mathematical PhysicsAnalysisAnalysis of PDEs (math.AP)MathematicsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire
researchProduct

Quasiadditivity of Variational Capacity

2013

We study the quasiadditivity property (a version of superadditivity with a multiplicative constant) of variational capacity in metric spaces with respect to Whitney type covers. We characterize this property in terms of a Mazya type capacity condition, and also explore the close relation between quasiadditivity and Hardy's inequality.

SuperadditivityPure mathematicsProperty (philosophy)Relation (database)Inequalitymetrijärjestelmämedia_common.quotation_subjectmetric spaceHardy's inequalitykapasiteettiType (model theory)Whitney coverFunctional Analysis (math.FA)Mathematics - Functional AnalysisMetric spacePrimary 31E05 31C45 Secondary 46E35 26D15FOS: MathematicsMultiplicative constantAnalysisvariational capacityMathematicsmedia_commonPotential Analysis
researchProduct

Lower semicontinuity of weak supersolutions to the porous medium equation

2013

Weak supersolutions to the porous medium equation are defined by means of smooth test functions under an integral sign. We show that nonnegative weak supersolutions become lower semicontinuous after redefinition on a set of measure zero. This shows that weak supersolutions belong to a class of supersolutions defined by a comparison principle.

Degenerate diffusion35K55 31C45Applied MathematicsGeneral MathematicsMathematical analysista111Mathematics::Analysis of PDEscomparison principlelower semicontinuitysupersolutionsMathematics - Analysis of PDEsporous medium equationFOS: MathematicsPorous mediumdegenerate diffusionSign (mathematics)MathematicsAnalysis of PDEs (math.AP)
researchProduct

p-Laplacian type equations involving measures

2003

This is a survey on problems involving equations $-\operatorname{div}{\Cal A}(x,\nabla u)=\mu$, where $\mu$ is a Radon measure and ${\Cal A}:\bold {R}^n\times\bold R^n\to \bold R^n$ verifies Leray-Lions type conditions. We shall discuss a potential theoretic approach when the measure is nonnegative. Existence and uniqueness, and different concepts of solutions are discussed for general signed measures.

Mathematics - Analysis of PDEsFOS: Mathematics35J60 31C45Analysis of PDEs (math.AP)
researchProduct

Classification criteria for regular trees

2021

Esitämme säännöllisten puiden parabolisuudelle yhtäpitäviä ehtoja. We give characterizations for the parabolicity of regular trees. peerReviewed

Regular treeCapacityparabolicitycapacity31C05 31C15 31C45 31E05Mathematics::Analysis of PDEsMetric Geometry (math.MG)ArticlesFunctional Analysis (math.FA)CombinatoricsMathematics - Functional AnalysisfunktioanalyysiMathematics - Analysis of PDEsregular treeHarmonic functionMathematics - Metric Geometryharmonic functionFOS: MathematicsMathematicsAnalysis of PDEs (math.AP)
researchProduct

Volume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions

2023

In a complete metric space equipped with a doubling measure supporting a $p$-Poincar\'e inequality, we prove sharp growth and integrability results for $p$-harmonic Green functions and their minimal $p$-weak upper gradients. We show that these properties are determined by the growth of the underlying measure near the singularity. Corresponding results are obtained also for more general $p$-harmonic functions with poles, as well as for singular solutions of elliptic differential equations in divergence form on weighted $\mathbf{R}^n$ and on manifolds. The proofs are based on a new general capacity estimate for annuli, which implies precise pointwise estimates for $p$-harmonic Green functions…

Mathematics - Analysis of PDEsGeneral MathematicsFOS: MathematicsPrimary: 31C45 Secondary: 30L99 31C12 31C15 31E05 35J08 35J92 46E36 49Q20AnalysisAnalysis of PDEs (math.AP)Journal d'Analyse Mathématique
researchProduct

The annular decay property and capacity estimates for thin annuli

2016

We obtain upper and lower bounds for the nonlinear variational capacity of thin annuli in weighted $\mathbf{R}^n$ and in metric spaces, primarily under the assumptions of an annular decay property and a Poincar\'e inequality. In particular, if the measure has the $1$-annular decay property at $x_0$ and the metric space supports a pointwise $1$-Poincar\'e inequality at $x_0$, then the upper and lower bounds are comparable and we get a two-sided estimate for thin annuli centred at $x_0$, which generalizes the known estimate for the usual variational capacity in unweighted $\mathbf{R}^n$. Most of our estimates are sharp, which we show by supplying several key counterexamples. We also character…

Pure mathematicsProperty (philosophy)General Mathematicsthin annulusPoincaré inequality01 natural sciencesMeasure (mathematics)Upper and lower boundssymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsMathematicsPointwiseApplied Mathematics010102 general mathematicsmetric spaceMetric Geometry (math.MG)31E05 (Primary) 30L99 31C15 31C45 (Secondary)kapasiteettiSobolev spaceSobolev spaceNonlinear systemMetric spaceannular decay propertyPoincaré inequalitydoubling measuresymbolsupper gradient010307 mathematical physicsweighted RnAnalysis of PDEs (math.AP)Newtonian spacevariational capacity
researchProduct

Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces

2015

Submitted by Alexandre Almeida (jaralmeida@ua.pt) on 2015-11-12T11:41:07Z No. of bitstreams: 1 RieszWolff_RIA.pdf: 159825 bytes, checksum: d99abdf3c874f47195619a31ff5c12c7 (MD5) Approved for entry into archive by Bella Nolasco(bellanolasco@ua.pt) on 2015-11-17T12:18:41Z (GMT) No. of bitstreams: 1 RieszWolff_RIA.pdf: 159825 bytes, checksum: d99abdf3c874f47195619a31ff5c12c7 (MD5) Made available in DSpace on 2015-11-17T12:18:41Z (GMT). No. of bitstreams: 1 RieszWolff_RIA.pdf: 159825 bytes, checksum: d99abdf3c874f47195619a31ff5c12c7 (MD5) Previous issue date: 2015-04

Pure mathematicsWolff potentialScale (ratio)Weak Lebesgue spaceVariable exponentMathematics::Classical Analysis and ODEsLebesgue's number lemmaNon-standard growth conditionIntegrability of solutionssymbols.namesakeMathematics - Analysis of PDEsReal interpolationFOS: MathematicsLp spaceMathematicsLaplace's equationMathematics::Functional AnalysisVariable exponentIntegrability estimatesRiesz potentialApplied MathematicsMathematical analysisFunctional Analysis (math.FA)Mathematics - Functional AnalysissymbolsRiesz potential47H99 (Primary) 46B70 46E30 35J60 31C45 (Secondary)Analysis of PDEs (math.AP)
researchProduct

Gradient Estimate for Solutions to Poisson Equations in Metric Measure Spaces

2011

Let $(X,d)$ be a complete, pathwise connected metric measure space with locally Ahlfors $Q$-regular measure $\mu$, where $Q>1$. Suppose that $(X,d,\mu)$ supports a (local) $(1,2)$-Poincar\'e inequality and a suitable curvature lower bound. For the Poisson equation $\Delta u=f$ on $(X,d,\mu)$, Moser-Trudinger and Sobolev inequalities are established for the gradient of $u$. The local H\"older continuity with optimal exponent of solutions is obtained.

Sobolev inequalityMathematics::Analysis of PDEsHölder conditionPoincaré inequality31C25 31C45 35B33 35B65Poisson equationSpace (mathematics)01 natural sciencesMeasure (mathematics)Sobolev inequalitysymbols.namesakeMathematics - Analysis of PDEs0103 physical sciencesFOS: Mathematics0101 mathematicsMathematicsMoser–Trudinger inequalityCurvatureRegular measureta111010102 general mathematicsMathematical analysisPoincaré inequalityMetric (mathematics)Riesz potentialsymbols010307 mathematical physicsPoisson's equationAnalysisAnalysis of PDEs (math.AP)
researchProduct